

BAB V

Sistem Persamaan Linier

- Salah satu hal penting dalam aljabar linear dan dalam banyak masalah matematika terapan adalah menyelesaikan suatu sistem persamaan linear .
- Representasi Sistem Persamaan Linear
 Sistem n persamaan linear dengan n variabel dapat dinyatakan sebagai berikut:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

• Dimana x_1, x_2, \ldots, x_n variabel tak diketahui, a_{ij}, b_i , $i = 1, 2, \ldots, m$; $j = 1, 2, \ldots, n$ bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel.

PENYAJIAN SPL DALAM MATRIKS

SPL

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

BENTUK MATRIKS

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

STRATEGI MENYELESAIKAN SPL:

mengganti SPL lama menjadi SPL baru yang mempunyai penyelesaian sama (ekuivalen) tetapi dalam bentuk yang lebih sederhana.

• Contoh:

Selesaikan SPL berikut

$$3x - 2y = 7$$
$$2x + y = 14$$

- Penyelesaian permasalah di atas:
 - Substitusi
 - Eliminasi
 - Grafik
 - Determinan

TIGA OPERASI STANDAR PENYELESAIAN SPL

- 1. Mengalikan suatu persamaan dengan konstanta tak nol.
- Mengalikan suatu baris dengan konstanta tak nol.

2. Menukar posisi dua persamaan sebarang.

- Menukar posisi dua baris sebarang.
- 3. Menambahkan kelipatan suatu persamaan ke persamaan lainnya.
- Menambahkan kelipatan suatu baris ke baris lainnya.

Ketiga operasi ini disebut OPERASI BARIS ELEMENTER (OBE)

SPL atau bentuk matriksnya diolah menjadi bentuk sederhana sehingga tercapai 1 elemen tak nol pada suatu baris

DIKETAHUI

kalikan pers (i) dengan (-2), kemudian tambahkan ke pers (ii).

kalikan pers (i) x + y + 2z = 9 dengan (-3), kemudian tambahkan ke 2y - 7z = -17 $\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 3y - 11z = -27 \end{bmatrix}$ pers (iii).

kalikan pers (ii) dengan (1/2).

CONTOH

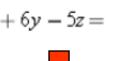
$$x + y + 2z = 9$$

 $2x + 4y - 3z = 1$
 $3x + 6y - 5z = 0$

$$x + y + 2z = 9$$
$$2x + 4y - 3z = 1$$
$$3x + 6y - 5z = 0$$

$$x + y + 2z = 9
2y - 7z = -17
3x + 6y - 5z = 0$$

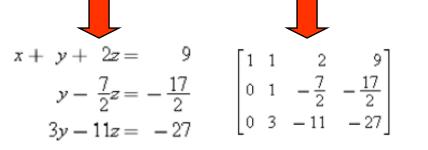
$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 3 & 6 & -5 & 0 \end{bmatrix}$$



$$x + y + 2z = 5$$

$$2y - 7z = -17$$

$$3y - 11z = -27$$



$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 3 & -11 & -27 \end{bmatrix}$$

kalikan baris (i) dengan (-2), lalu tambahkan ke baris (ii).

kalikan baris (i) dengan (-3), lalu tambahkan ke baris (iii).

kalikan baris (ii) dengan (1/2).

kalikan pers (ii) dengan (1/2).

$$x + y + 2z = 9$$

$$y - \frac{7}{2}z = -\frac{17}{2}$$

$$3y - 11z = -27$$

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 3 & -11 & -27 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 3 & -11 & -27 \end{bmatrix}$$

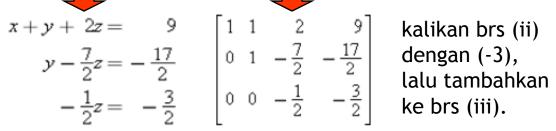
kalikan baris (ii) dengan (1/2).

kalikan pers (ii) dengan (-3), lalu tambahkan ke pers (iii).

$$x + y + 2z = 9$$

$$y - \frac{7}{2}z = -\frac{17}{2}$$

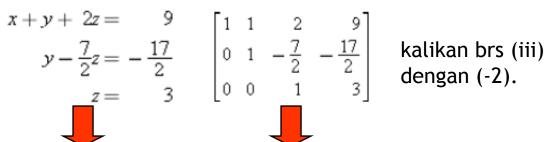
$$-\frac{1}{2}z = -\frac{3}{2}$$



kalikan pers (iii) dengan (-2).

(i).

kalikan pers (ii)
$$x + \frac{11}{2}z = \frac{1}{2}z = \frac{1}{2}z$$



$$\begin{bmatrix} 1 & 0 & \frac{11}{2} & \frac{35}{2} \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

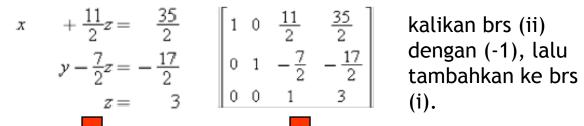
kalikan brs (ii) dengan (-1), lalu tambahkan ke brs (i).

kalikan pers (ii) dengan (-1), lalu tambahkan ke pers (i).

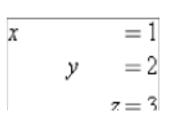
$$x + \frac{11}{2}z = \frac{35}{2}$$

$$y - \frac{7}{2}z = -\frac{17}{2}$$

$$z = 3$$



kalikan pers (iii) dengan (-11/2), lalu tambahkan ke pers (i) dan kalikan pers (ii) dg (7/2), lalu tambahkan ke pers (ii)



x = 1 y = 2 $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$ Kalikan Drs (iii)
dengan (-11/2), lalu
tambahkan ke brs (i)
dan kalikan brs (ii) dengan kalikan brs (ii) kalikan brs (iii) dan kalikan brs (ii) dg (7/2), lalu tambahkan ke brs (ii)

Diperoleh x = 1, y = 2, z = 3. Terdapat kaitan menarik antara bentuk SPL dan representasi matriksnya. Metoda ini disebut dengan METODA ELIMINASI GAUSS.

Eliminasi gauss

Prosedur penyelesaian dari metoda ini adalah mengurangi sistem persamaan ke dalam bentuk segitiga sedemikian sehingga salah satu dari persamaan-persamaan tersebut hanya mengandung satu bilangan tak diketahui, dan setiap persamaan berikutnya hanya terdiri dari satu tambahan bilangan tak diketahui baru

Metode Gauss Jordan

- Metode Gauss jordan adalah pengembangan dari eliminasi gauss
- Matriks di rubah menjadi segitiga bawah dan atas (matriks identitas)
- Variabel persamaan bisa langsung dibaca

Contoh:

Selesaikan sistem persamaan berikut ini:

$$3 \times -0.1 \text{ y} - 0.2 \text{ z} = 7.85$$

 $0.1 \times +7 \text{ y} - 0.3 \text{ z} = -19.3$
 $0.3 \times -0.2 \text{ y} + 10 \text{ z} = 71.4$

Dalam bentuk bentuk matriks:

$$\begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7.85 \\ -19.3 \\ 71.4 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7.85 \\ -19.3 \\ 71.4 \end{bmatrix} \begin{bmatrix} 3 & 0.1 & -0.2 \\ 0 & 7.003 & -0.293 \\ 0 & -2.19 & 10.02 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7.85 \\ -19.562 \\ 70.615 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0.1 & -0.2 \\ 0 & 7.003 & -0.293 \\ 0 & 0 & 10.012 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7.85 \\ -19.562 \\ 70.084 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -0.0333 & -0.06667 \\ 0 & 1 & -0.4188 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2.61667 \\ -2.7932 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -0.0668 \\ 0 & 1 & -0.4188 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2.5236 \\ -2.7932 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -0.4188 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2.7932 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2,5 \\ 7 \end{bmatrix}$$

Metode Gauss Seidel

 Metode ini menerapkan terkaan-terkaan awal dan kemudian diiterasi untuk memperoleh taksiran-taksiran yang diperhalus dari penyelesaiannya

Contoh:

Selesaikan sistem persamaan berikut ini:

$$3 \times -0.1 \text{ y} - 0.2 \text{ z} = 7.85$$

 $0.1 \times + 7 \text{ y} - 0.3 \text{ z} = -19.3$
 $0.3 \times -0.2 \text{ y} + 10 \text{ z} = 71.4$

prosedur:

- ➤ Nilai yang belum diketahui dianggap nol
- Hasil dari perhitungan digunakan untuk perhitungan selanjutnya.
- ❖Iterasi pertama
- ➤ Dengan menganggap bahwa y dan z adalah nol, maka x dapat dihitung:

$$x = \frac{7,85 + 0,1y + 0,2z}{3} = \frac{7,85}{3} = 2,61667$$

Nilai y ini dengan anggapan nilai z adalah nol dan x adalah hasil yang barus saja dididapat, kemudian disubtitusikan ke persamaan berikut :

$$y = \frac{-19,3 - 0,1x + 0,3z}{7} = \frac{-19,3 - 0,1(2,61667)}{7} = -2,7945$$

Nilai y dan nilai x , disubtitusikan untuk mencari nilai z

$$z = \frac{71,4-0,3x+0,2y}{10} = \frac{71,4-0,3(2,61667)+0,2(2,7945)}{10}$$
$$z = 7,0056$$

❖Iterasi ke-2

$$x = \frac{7,85 + 0,1y + 0,2z}{3} = \frac{7,85 + 0,1(-2,7945) + 0,2(7,0056)}{3}$$
$$= 2,99056$$

$$y = \frac{-19,3 - 0,1x + 0,3z}{7} = \frac{-19,3 - 0,1(2,99056) + 0,3(7,0056)}{7}$$
$$= -2,49962$$

$$z = \frac{71,4 - 0,3x + 0,2y}{10} = \frac{71,4 - 0,3(2,99056) + 0,2(-2,49962)}{10}$$
$$z = 7,00029$$

❖Iterasi ke-3

$$x = \frac{7,85 + 0,1y + 0,2z}{3} = \frac{7,85 + 0,1(-2,49963) + 0,2(7,0029)}{3}$$
$$= 3,00032$$

$$y = \frac{-19,3 - 0,1x + 0,3z}{7} = \frac{-19,3 - 0,1(3,00032) + 0,3(7,0029)}{7}$$
$$= -2,49999$$

$$z = \frac{71,4 - 0,3x + 0,2y}{10} = \frac{71,4 - 0,3(3,00032) + 0,2(-2,49999)}{10}$$
$$z = 6,99999$$

❖Iterasi ke-4

$$x = \frac{7,85 + 0,1y + 0,2z}{3} = \frac{7,85 + 0,1(-2,499999) + 0,2(6,99999)}{3}$$
$$= 3$$

$$y = \frac{-19,3 - 0,1x + 0,3z}{7} = \frac{-19,3 - 0,1(3) + 0,3(6,99999)}{7}$$
$$= -2,5$$

$$z = \frac{71,4-0,3x+0,2y}{10} = \frac{71,4-0,3(3)+0,2(-2,5)}{10}$$

$$z = 7$$

Subtitusi Mundur dan Subtitusi Maju

Pandang SPL dengan matriks koefisisen berupa matriks segitiga atas berikut :

• Algoritma Subtitusi Mundur

$$x_n = b_n / a_{nn}$$
Untuk $k = n - 1, ... 1$

$$b_k - \sum_{j=k+1}^n a_{kj} x_j$$

$$a_{kj}$$

Jika kita menyelesaikannya secara maju, algoritma yang berhubungan disebut subtitusi maju

SPL nya berbentuk

• Algoritma Subtitusi Maju

$$x_n = b_1 / a_{11}$$

Untuk $k = 2, 3, ... n$

$$x_k = \frac{b_k - \sum_{j=1}^{k-1} a_{kj} - x_j}{a_{kk}}$$