
Riemann Sums in MATLAB

Definition. Let f(x) be a function on an interval [a, b], and suppose this interval is parti-
tioned by the values a = x0 < x1 < ... < xn−1 < xn = b. Any sum of the form

R =

n∑
k=1

f(ck)△xk,

where △xk = xk − xk−1 and ck ∈ [xk−1, xk] is referred to as a Riemann sum of f .
If we let P denote our choice of partition (the choice of values x0, x1, ..., xn), and we let

‖P‖ := max(△x1,△x2, ...,△xn)

denote the norm of this partition, then we say f is Riemann integrable if

lim
‖P‖→0

n∑
k=1

f(ck)△xk

exists. Following Leibniz, our notation for this limit is

∫
b

a

f(x)dx = lim
‖P‖→0

n∑
k=1

f(ck)△xk.

Example 1. As our first example, we will consider the case in which ck is always chosen as
the right endpoint of the interval [xk−1, xk]. If we take a regular partition with n intervals,

then each interval has length △x = b−a

n
, and the kth endpoint is

xk = a + k△x.

The Riemann sum becomes

R =

n∑
k=1

f(a + k△x)△x.

Suppose we would like to approximate the integral

∫
2

0

e−x
2

dx

with n = 4. We have △x = 2−0

4
= .5 and the values

x0 = 0

x1 = .5

x2 = 1

x3 = 1.5

x4 = 2.0.

1



The Riemann sum is

R =

4∑
k=1

f(0 + .5k).5 = .5(e−.5
2

+ e−1
2

+ e−1.5
2

+ e−2
2

) = .6352.

More generally, we can write a MATLAB function M-file that carries out this calculation for
any function f (defined as an inline function), endpoints a and b and regular partition with
n points. See rsum1.m.

function value=rsum1(f,a,b,n)
%RSUM1: Computes a Riemann Sum for the function f on
%the interval [a,b] with a regular partition of n points.
%The points on the intervals are chosen as the right endpoints.
value = 0;
dx = (b-a)/n;
for k=1:n
c = a+k*dx;
value = value + f(c);
end
value = dx*value;

We run this in MATLAB with the following lines in the Command Window.

>>f=inline(’exp(-xˆ2)’)
f =
Inline function:
f(x) = exp(-xˆ2)
>>rsum1(f,0,2,4)
ans =
0.6352
>>rsum1(f,0,2,10)
ans =
0.7837
>>rsum1(f,0,2,100)
ans =
0.8723
>>rsum1(f,0,2,1000)
ans =
0.8811

To four decimal places, the correct value is .8821. △
One interesting aspect of the Riemann sum is that the points ck need not be chosen

in the same place on each interval. That is, suppose we partition the interval [0, 1] with
0 = x0 < x1 = 1

2
< x2 = 1. In this case, a possible Riemann sum is

f(0)
1

2
+ f(1)

1

2
.

2



Here △x1 = △x2 = 1

2
, and we have chosen c1 as the left endpoint of the interval [0, 1

2
] and

c2 as the right endpoint of the interval [1
2
, 1].

Example 2. As our second example, we will consider the case in which ck is randomly
selected on the interval [xk−1, xk]. In this case, we revise rsum1.m into rsum2.m.

function value=rsum2(f,a,b,n)
%RSUM2: Computes a Riemann Sum for the function f on
%the interval [a,b] with a regular partition of n points.
%The points on the intervals are chosen randomly.
value = 0;
dx = (b-a)/n;
for k=1:n
c = dx*rand + (a + (k-1)*dx);
value = value + f(c);
end
value = dx*value;

The only tricky line here is the one that defines ck as a random number on the interval
[xk−1, xk]. In order to avoid a digression on the simulation of random variables, let’s simply
accept that this line works.1 The implementation is as follows (assuming f(x) = e−x

2

has
already been defined as an inline function).

>>rsum2(f,0,2,10)
ans =
0.8665
>>rsum2(f,0,2,100)
ans =
0.8818
>>rsum2(f,0,2,1000)
ans =
0.8821

Notice that your values may vary slightly from these due to the random nature of the
program. Nonetheless, you should find that Riemann sums based on random values are
actually converging more rapidly to the correct solution than did Riemann sums based on
right endpoints.

1Okay, if you’re really curious. Given any interval [a, b], the points c = (1 − r)a + rb move from a to b

as r goes from 0 to 1. Our generic interval is [a + (k − 1)△x, a + k△x] and rand denotes a value randomly
chosen between 0 and 1. Therefore c = (1− rand)(a + (k − 1)△x) + rand(a + k△x), which gives the formula
we’re using.

3



Assignments

1. Alter the M-file rsum1.m so that it computes Riemann sums of the given function by
taking the values ck as the left endpoints of each interval. Use your M-file to estimate

∫
2

0

e−x2

dx

for regular partitions with n = 10, 100, 1000.

2. Alter the M-file rsum1.m so that it computes Riemann sums of the given function by
taking the values ck as the midpoints of each interval. Use your M-file to estimate

∫
2

0

e−x
2

dx

for regular partitions with n = 10, 100, 1000.

4


